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The thermodynamic properties of the mean spherical (MSA), Percus-Yevick 
(PY), and hypernetted-chain (HNC) approximations are derived by a simple 
and unified approach by considering the RPA free-energy functional ~ and 
employing an Ewald-type identity. It is demonstrated that with decreasing 
relative contribution of the hard-core insertion to the thermodynamic functions, 
the MSA changes its nature from PY-like to HNC-like, with ~: changing its role 
from excess pressure to excess free energy, respectively. It is found that the 
condition of continuity of the MSA pair functions is equivalent to a stationarity 
condition for ~: and leads to thermodynamic consistency between the "virial" 
and "energy" equations of state for the (thus defined) "soft"-MSA (SMSA), 
with ~: playing the role of the excess free energy. It is shown that the PY- 
"compressibility" and "virial" equations of state for D-dimensional hard spheres 
may be simply obtained one from the other without knowing any details of the 
solution of the model. Using this relation we find an indication that the PY 
approximation for hard spheres becomes less accurate with increasing dimen- 
sionality. A general variational formulation is presented for the application of 
the MSA for soft potentials, and results for the one-component plasma are 
discussed and extended. 

KEY WORDS: Mean-spherical approximations; equations of state; Coulomb 
systems; integral equations for fluids. 

1. I N T R O D U C T I O N  

The interest  in the mean-spher i ca l  a p p r o x i m a t i o n  ( M S A )  t~") for s imple  fluids 

is par t ly  due to the ava i lab i l i ty  o f  ana ly t ic  so lu t ions  "b) o f  tha t  mode l  for 

cer ta in  special  systems,  of  which  those  with  the C o u l o m b  and Y u k a w a  pair  
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potentials supplementing the hard-core constraint have been the object of 
extensive analysis in recent years. ~1c) An analytic study of the ther- 
modynamic properties of the MSA for simple fluids and simple fluid 
mixtures has been made by Hoye and Stell, ~2) and their method of derivation 
has been further simplified. ~3) The MSA may serve as a model for soft 
potentials (without hard cores) when the hard-core diameters are considered 
as free parameters and are determined by appropriate physical constraints. 
The first application of this approach is due to Gillan. ~4) He used the 
Palmer-Weeks ~5) solution for charge hard spheres and imposed continuity of 
the pair function g(r) to obtain rather accurate results for the Coulomb 
potential (i.e., the one-component plasma). Gillan's continuity condition has 
been subsequently applied for the Yukawa potential, as a model for the 
screened one-component plasma (OCP), (6) and for the description of dilute 
charged colloidal dispersions. ~7) 

Gillan's approach has been generalized and discussed in the light of the 
modified-HNC (MHNC) scheme, ~8'9) and has been termed soft-MSA 
(SMSA). The physical motivation for the SMSA has been based on the idea 
of regarding the hard-core insertion in a potential as a perturbation.~9) The 
thermodynamic functions for the SMSA via the "energy" equation of state 
have been derived in two alternative ways, and the special role played by 
potentials that possess Fourier transforms has been emphasized. ~3'9) It has 
been noted in practice, t1~ from the numerical results, and derived on the 
basis of general arguments concerning the MSA, ~12) that the continuity 
condition of Gillan is equivalent to an extremum condition for the potential 
energy when it is considered as a function of the hard-core diameters. This 
equivalence has played a key role in elucidating the physical nature of the 
SMSA for strongly coupled D-dimensional v-component plasmas. (t3) More 
recently MacGowan ~14-~6) considered alternative criteria for choosing the 
hard-core parameter of the MSA, leading to discontinuous pair functions but 
with apparently improved results for the thermodynamics (as demonstrated 
for the OCP). 

Analytic solutions of the MSA may be useful also in the context of the 
variational perturbation theory (VPT) for simple classical fluids. Foiles and 
Ashcroft ~7) have fitted the Lennard-Jones potential by a linear combination 
of Yukawa potentials for which the energy integrals using the Percus-Yevick 
(PY) pair functions for the hard spheres (namely, the MSA results for hard 
spheres) can be calculated analytically. Such modeling is especially fruitful 
when considering the VPT for mixtures. This approach can be further 
extended by employing the MSA pair functions for the Yukawa potential. 
The choice of the corresponding VPT entropy function has been recently 
discussed in light of the MHNC scheme. (~8) An alternative approach but 
with a similar philosophy has been briefly sketched at the end of Ref. 2. 
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Another general possibility within the context of the MSA is to use the 
MSA result for one potential as a model for another hard-core potentials, by 
manipulating the MSA "tail" parameters. This idea originates from the work 
of Waisman (19) for hard spheres employing the MSA results for the Yukawa 
potential tail. 

The aim of the present work is to extend the analysis of the MSA along 
directions mentioned above and in particular to demonstrate that with 
decreasing relative contribution of the hard-core insertion to the 
thermodynamic functions, the MSA free-energy functional changes its nature 
from Percus-Yevick-like to HNC-like. It it found that Gillan's continuity 
condition implies the requirement of "virial"-"energy" thermodynamic 
consistency for the MSA, and it is shown that the PY-"compressibility" and 
"virial" equations of state for D-dimensional spheres may be simply obtained 
one from the other without knowing any details of the solution. 

This paper is organized as follows: In Section 2 the method of Ref. 3 is 
extended to provide a very simple derivation of all the general results for the 
MSA as obtained in Ref. 2, and is applied also to the PY and HNC theories 
for arbitrary potentials. (2~ Hard-core potentials and derivatives with respect 
to the hard-core diameters are considered in Section 3, where it is also shown 
that the HNC free-energy functional as usually obtained via the energy 
equation of state by the "coupling constant" integration, (2~) does represent 
the HNC "virial" excess free energy also for the hard-sphere potential. Hard- 
core and soft-core limits for the MSA are discussed in Section 4, and general 
results for the PY approximation for hard spheres on one hand, and for the 
SMSA, on the other hand, are displayed. Finally, an alternative motivation 
for a discontinuous MSA for soft potentials is offered in Section 5, a general 
variational formulation of the problem is given, and as an example of the 
utility of the results in Section 3, MacGowan's results for the OCP are 
discussed and extended. 

2. THERMODYNAMIC FUNCTIONS 

Consider a multicomponent system of particles of partial number 
concentrations x i, total number density p = N / V ,  at temperature T =  
(kBfl) -1, interacting through the pair potentials fki:(r ). The pair functions 
hij(r ) =- gij(r) - 1 are related to the direct correlation functions cij(r ) by the 
Ornstein-Zernike (OZ) equations 

hij(k) .-= (i:(k) + p ~ xthu(k ) 5lj(k ) (1) 
l 
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where tilde signs denote Fourier transforms. The structure factors Sij(k ) are 
defined by 

P(XiXj ) 1/2 hij(k) : Sij(k ) - (~ij (2 )  

From Eqs. (1) and (2) one obtains the matrix equation 

rn [] [] 
s = ( 1  - c )  -I (3) 

[] O 
where Si:(k ) are the elements of S and (C)ij=P(Xixj)l/2cij(k) are the 

[] [] 
elements of C, while 1 is the unit matrix with elements 3~j. 

The RPA free energy functional, ~, is a key quantity in the integral 
equation approach to simple classical fluids. It is defined by 

1 1 
x i f Eu(k) dk ~ = _ __~ p ~ij xixj f co(r) dr + __~ (2zr ) i) 

+2pl (Dz)_ D f dk In det(~ - ~) (4) 

with "det" denoting the determinant and "D" the dimensionality. We shall 
first derive some general properties of ~, valid for general pair functions and 
for arbitrary D, and then consider pair functions obeying various approx- 
imations, namely PY, HNC, and MSA. 

2.1.  General Results 

is a functional of the cij(r)'s and a general variation in ~ as a result 
of a variation in the c;j's is given by 

1 S~ 1 3~ = - --5-P <_T xix: f &ij(r) dr q--~--(27c)-D a~. Xi ~ ~cii(k ) dk 

1 (27r)_  D ~ (Xixj) l/2 I Sij(k) ~)eij(k) dk  ( 5 )  
2 ij " 

Using the Ewald-type identity that follows directly from (2), namely, 

p ~.. xix j f gi:(r) Oi:(r ) dr 
IJ 

=p ~.j xix: f Oi:(r)dr- (2zc) -D ~ x , ~  Oi,(k)dk 

+ (Dr)-~ ~ (x,xfll/= f Sij(k) ~ij(k) dk (6) 
ij 
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where Otj(r ) are arbitrary functions that possess Fourier transforms Oij(k), it 
follows from (5) that 

63 = -- ~ p Z.. xixj f gij(r) 6cij(r) dr (7) 
t j  

or, in other words 

63 1 
6cti(r ) -- 2 PXiXjgq(r) (8) 

This relation, obtained previously (=) by graph theoretical methods, is 
derived here in a single step, showing the simplifying role played by (6) in 
this context. 

Letting 2 be a parameter of the pair functions other than p, we get from 
(7) that 

83 1 xixj f ~ d r  a,~ = T p x~ gij(r) (9) 
lJ 

To make use of the corresponding relation with 2 = p we first switch to the 
reduced variable ~ = rp ira. Using Eqs. (4)-(6) we get [instead of (7)] 

63 = - 2 ~ x ix j j  gij(~) 68~j(r d~ (10) 
U 

where now 63 is a general variation on 3 that may result also from varying 
the density. Here gij(~)= gij(~/Plm), ?ij(~)= Cij(~/Pl/D) �9 From (10) we get 

8~ 1 
8p 2 ~" u p  (11) 

Defining 

8 
cb(r) = ~r ciJ(r) 

we obtain 

1 8 
d (Ti~_m ,p, fl) ( 1 )  (7~_b_/o) P + ~ P  cij(r'p'fl) e,;.(r v, 5) = c,.',. 

where we display explicitly the p and fl dependence of the cq's. 

(12) 
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Defining the virial-type integral Jv by (see Ref. 2) 

Jv=--~D ~XiXjS g i j ( r ) r ~ d r  (13) 

we use Eqs. (11), (12) to get 

O~ @ ~u 8c ij(r) P-~p =Jv-- xixj f gii(r)-~--p dr (14) 

By direct differentiation of (4), on the other hand, using (6) we get 

8q6 _ 1 8P p 2 xixj ~ cu(r) + P ~ ] 
P 8p q6+ + T  • 8p 2 is dr 

(15) 

where the compressibility is given by 

8P 
fi--~-p = 1 -  p ~ xix , ~ cu(r) dr (16) 

U 

Combining Eqs. (14) and (15) we finally get 

Sv=-~ /3-fffi-p -1  - ~ - T ~  xixj; gij(r)cii(r)dr (17) 

Let Z c = (/3P/p)c be the compressibility factor as obtained from Eq. (16) 
(i.e., the "compressibility" equation of state). We write 

=-~(Z e -  1 ) + a  (18) 

where, using Eq. (15), 

#c~j(r) q 8~-CoA)=-@Zxixj~ gu(r) %(r)+p--g~p J dr (19) 8p u 

Rosenfeid 

2.2 .  Application to the Approximate Theories 

In the Percus-Yevick  (PY)  approximation 

Cij(r ) - - =  (1 -- e ~*iJ(r)) gu(r) ==- ru(r ) gij(r) (20) 
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Eq. (19) takes the form 

[ 8gi/(r) ] 
~-p(pA)= ~ - - P x f ~ x i x / f  "~[ g~j(r)+P--~--p gi/(r) dr 

1 ~..x,x/fri,(r) O [~- ] - 2 ,, ~ gb(r)  dr 

or 

A (pv) = __ P ~ x ix / f  ri/(r) g~/(r) dr - 44--; . 
U 

P V xtx a f gi/(r) cij(r ) dr 4~.. 
U 

In view of Eq. (18) we finally obtain 

(21) 

Z~ pY' -  1 = 2a + x ix j f  r~ l(r) c2(r) dr (22) 
U 

which is the result obtained by Baxter (23'24) long ago: the functional 
Z~c PY)- 1 given by Eq. (22) is stationary with respect to small variations of 
the ci/(r)'s provided that the PY approximation [Eq. (20)] is satisfied. 

In the hypernetted chain (HNC) approximation 

cu(r ) = hv(r ) - ln[gv(r ) e ~**j(r)] (23) 

The functionalf(UNC) given by 

f(HNC) = ~ Jr- P - - ~  XiX j (h2(r) dr (24) 
4 ".~-. 

U 

is readily seen from Eq. (7) to be stationary with respect to small variations 
in the pair functions provided Eq. (23) holds. Using Eqs. (6) and (23) we get 

~f(HNC)~)I. - -  p2 ~--T' XiX/I gij(r)~-- X [flOij(r)]dr (25) 
U 

and in particular, with 2 = fl 

~ f ( H N C )  

f l - - - -  u (26) 

where u = flU/N is the potential energy 

u = 2 Z x,xj ~ g,j(r)~O,i(r)dr 
tJ 

(27) 
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The pressure according to the virial theorem is given by 

) , f OO, (r) dr (28) Z v - l -  7 v - l -  Z x i x j  &i( r) rfl Or 2D ,~ 

and using Eqs. (13) and (23) ones gets 

P \7 f h ~j(r) dr (29) j(HNC) = Z V  __ 1 -- 4 ~.. xixi 
U 

Using Eqs. (14), (23), and (24) one obtains for the HNC approximation 

Of (sNc) _z(nNc) + 4 2 x i x j f  hb(r)d 
_ _  o V 

zJ 

so that 

~ f ( H N C )  - -  ~ v T ( H N C )  - -  1 (30) 
P 0p 

Using 

0~f~H,~c~ 0~U~HNc~ 

Eqs. (26) and (30) show that the HNC approximation satisfies Hiroike's 
test ~25) 

0 v - - T  ~ -  - P  (31) 

i.e., there is thermodynamic consistency between the "energy" and "virial" 
equations of state. The functional f(HNC) represents the excess free energy as 
obtained by either the "virial" or the "energy" equations within the HNC 
approximation. 

In the mean spherical approximation (MSA) defined by 

gij(r) = O, r < Rij (32a) 

c~j(r) = --flOij(r), r > Rij (32b) 

the solution is obtained by finding the functions cij(r ) for r < R o', such that 
the functions gij(r) which satisfy the OZ relations (1) obey Eq, (32a). In 
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view of Eq. (8), the MSA equations may be formulated variationally by 
requiring @ 

= O, r < R i j  (33) 
6eij(r) 

Unlike the PY and HNC approximations for which the "generating" 
functionals Z~ PY) a n d f  (nyc) had a well-defined thermodynamic meaning, the 
interpretation of ~ depends on the context of its application (see below). 

3. HARD-CORE POTENTIALS 

Consider the rather general "hard-core" pair functions of the form 

gij(r) = g~(r)[H(r) - H ( r -  Rij)] + gi~.(r) H(r--  Rij) (34a) 

cij(r ) = c 5 ~j(r)[H(r)- H(r -R i j ) ]  +ci~.(r)H(r-Ri j  ) (34b) 

> r with g~(r)-=0, and the functions g~j(), c~(r), ci~.(r ) being smooth also 
across the (cores) Rij. H(x) denotes the unit step function: H(x < 0 ) =  0, 
H(x >/0) = 1. The continuity of the functions [gij(r) - cij(r)] is ensured by 
the OZ relations and yields 

c~ (Rij) -- ci>(Rij) = -gi~(Rij) (35) 

Recall that the virial equation of state for such hard-core potentials is (with 
co D = 2zD/2/F(D/2) the surface of a D-dimensional unit sphere) 

Z v =  1 + P~" ~ xixjR~giy(Rij) 
2D .. U 

2D ~ xtxj gij(r)r-~r [~O~j(r)] dr (36) 
ij R i j  

As in the preceding section we shall derive at first general results and 
then consider specific approximate theories. The generalization of the present 
calculations to pair functions involving more jump discontinuities (e.g., those 
for square-well potentials) is straightforward. 

3.1. General Results 

In order to calculate ~ / C g R l m  from Eq. (9) note that 

_ ~ 3 c ~ ( r )  H ( r  - -  Rij ) c3cii(r)c~R lrn - -  c3c<(r)c~R lm [H(r) - H(r - -  R i j ) ]  -] gRlm 

+ [c<(r) -- c,>(r)] Z-~-~(r --Rij ) 
ulX lm 

(37) 
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f [ gij(r) - eu(r)] Sou(r) dr 
c3R tm 

= "[ga(r)--e<(r)]-~ff~l~ + ~ [ g > ( r ) _ c > ( r ) j ~ a r  
ij ~ R  lm 

8R u D 
+ [g,~(Ru) - c,~(Ru)I(c~(Ru) - e,~ (R.)] - - a ~ ~  (38) 

8R l,. 

. . a c , j ( ~ ) .  I I a " ac~(~). 
; eiAr) Tff-~l ar =--~ J -8-ff~l e~(r) dr = f~"ci~'(r) ~ ar 

f~  c3ci~(r) " 1 l{  ~SRumDR~ + cir. (r) - -  ar + ~- e < �9 . ~ R I m  i J ( R i j ) ] 2 - -  [ c~ j (R id ) }2}  U ~ l m  

(39) 

Combining Eqs. (38) and (39), we use Eq. (35) to get 

co R O _ , 1 2  .aR,; ff 8c,Zr). f g,j(~) d r = - , ,  q --f gq(Rij) a-~t + . . g i ~ ( r ) ~ a r  (40)  
IJ 

and finally, 

acid(r) a~ P ~o E o_,  ~ aR,, a V x,~, f g , , ( , ) ~ d ~  - xixzRu gu(Ri;) c3Rtm 2 8 R  lm 4 ij ,j 

By a procedure similar to that leading to Eq. (41) we find that 

coD -~D ~ ;~ ~cij(r) Y v = P - ~  Y'xixjR~g~(RiJ)u + xixj J"g~ gij(r)r---~-dr 

(41) 

(42) 

3.2. PY Approximation 

For the PY approximation the functions yij(r)=gu(r)e~<j(r~ are 
continuous and from Eq. (22) using Eq. (9) and (20) we get 

p 8 8Z(fY) = -- -~- ~ xixj f y~j(r)-~ (e -~ij(r)) dr 
8 ~  -- 

U 

and in particular 

_ 2 8Ru 9Z(f Y) p co D ~ xix;R~j-le~*ff (Ru) gia(Ri;)}R,m 
8Rim 2 i: 

(43)  

(44) 
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3.3. HNC Approximation 

Similarly to the PY approximation, the continuity of the functions y;:(r) 
enables us to replace Eq. (25) by 

3f("Nc'cq2 P2 Z.. xix j f  Y;J(r)~---s dr (45) 
U 

3J'(UNC) P ~ ~Ri: (46) 
3 R ; ~  -- 20)D Z x;xjR~-'  gij(RiJ) cqR; m ij 

In particular 

In the HNC approximation 

f| ~c;j(r) R;: gij(r)r ~ dr 

---- -s gij(r)r ~--7 [flOiJ(r) ] d r +  JR.:~ hi:(r) ~hi:(r) r dr 

( ~ h ~ j ( r ) ~ r d r  DOgD f ~176 3~- "R,: -- 2 R;:c~r [h~:(r)] ( ~ )  dr 

EOD D 2  D r ;  h~:(r)dr 
- 2 Rahi:(Ri:)- 

lJ 

so that Eq. (42) takes the form 

j<HNC)= POnD V x;xjR~.gi:(Ri: ) 
v 2D ,, 

tJ 

P V' xlx: g;:(r)r-g 7 [flO~(r)] dr 2D ~ R;: 

P V xix: h2:(r) dr (47) 
4~-, ij "0 

Recalling the virial equation of state for hard-core potentials [Eq. 36)], we 
use Eqs. (47) and (29) to find that Eq. (30) holds also for hard-core 
potentials, and the functional f(uNc) represents the excess free energy via the 
"virial" equation of state even for the hard-sphere potential. 

3.4. Mean-Spherical Approximation 

For the mean-spherical approximation (MSA), with 

c,~(r) = -~O,j(r) (48) 

822/37/1-2-15 
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being the usual "closure," we have 6~C>(?')/6qRlm = 0,  and Eq. (41) takes the 
form (26) 

( ~ ) P 19--1 2 (49) MSA=-4 -('OD Z XiXjRiJ gij(Rij) r 
#Rlm ij 

For hard spheres Eqs. (44) and (49) are identical and agree with the explicit 
solutions of Lebowitz ~27) and of Lebowitz and Zomick (28) for additive hard 
spheres and nonadditive hard rods, respectively. From Eqs. (9) and (32) we 
get 

~ (MSA) 
- -  - u ( 5 0 )  ~P 

from Eqs. (14) and (32) we obtain 

~(MSA) 
-- r(MSm (5 1) P - -  oV 0p 

while Eqs. (48), (42), and (36) yield 

j(MSA) = z v  - 1 - poJ..__._~_~ S~ x i x j ~  gii(R~j ) 
v 2D .. tj 

PC~ n 2 + ~ - - ~  x i x jR  ij g,j(R ij) (52) 
U 

The utility of these expressions will be obvious when considering (see 
below) the limit gij(Rij) = O. 

3.5. Inequality for Hard-Core Systems and the Physical Role of 

From the Gibbs-Bogolinbov inequality it may be found that the free 
energy is a nondecreasing function of the hard-core diameters(14): 

~f />o (53) 
OR lm 

By Eqs. (44) and (46) we see that the excess free energies as obtained by the 
"compressibility" in PY theory, 

f(c PY) = f]  (Zc- -  1) dp 
P 
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or by the "energy" (="virial") in HNC theory, fr satisfy the exact 
inequality (53). The validity of (53) within the MSA depends, however, on 
our interpretation of the approximation. Let f0 represent the excess free 
energy for the purely hard-core system, i.e., f0 = lim~-.0f; then the MSA 
"energy" equation of state, Eq. (50), provides an approximation for the dif- 
ference 

(f-f0)MSA = (3 -- 30)MSA (54) 

Recall that 3o = l im~0 3 is related to the compressibility factor for the 
purely hard-core system as obtained in PY theory [A = 0 in Eq. (18)], 

1 [ 7  (PY) (.~ 3 ( f l = 0 , p , ( R e : I ) = z t ~ c  w, {Re:})- l] (55) 

For a one-component system the condition (53) in the approximation (54) 
takes the form 

g~MsA(R) /> [g~esY)(R)] 2 -- 2gHs(R ) (56) 

The result (56) is obtained from (53) and (54) by using Eq. (49), i.e., 

~3MSA P D--1 2 
- CODR gMsA(R) 

8R 4 

830 _ P cooRD_,[g~PsV)(R )]2 
cgR 4 

while the virial equation of state the hard spheres [see Eq. (36)] yields [with 
r~ = (pcOD/D )(R/2 ) D ] 

p60 

8fo cgfo cgr/ Z ~ -  1 0ti 2D RDgHs(R) pCOD RD-1 

8R - Or/ cgR r/ 8R pco D RD 2 ~ 
2 D �9 D 

= P wDRD-- 1 . 2gns(R ) 

If we use the PY-"virial" result forfo then (56) takes the form 

g~sA(R)/> [g(ffsY)(R)] 2 -- 2g(ffsY)(R) 

This inequality is always satisfies for 

g~ffsY)(R) ~< 2 [i.e., r /= (n/6)pR 3 <~ 0.25 in 3D] 
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but may be violated for larger values of the packing fraction t/. Note, 
however, that if we choose ~ to represent the excess free energy, as is 
suggested by the form of Eq. (54), i.e., f0 = 50 in Eq. (54), then by Eq. (49) 
we find that Eq. (53) will always be satisfied. 

4. HARD-CORE AND SOFT-CORE LIMITS FOR THE MSA 

The relative role played by the hard-core part of the interaction in deter- 
mining the thermodynamic properties of the system is a parameter that tells 
us whether the MSA result is PY-like or HNC-like or of intermediate nature. 
In the "PY" limit, namely, for purely hard-core interactions, the MSA and 
PY results are identical and ~ = �89 c -- 1). On the other hand when the 
hard-core contribution is relatively small, J~vMSA)-- ~ Z v -- 1, and in view of 
Eqs. (47) and (48) Hiroike's test will be satisfied with ~ replacingf CHNc) as 
the excess free energy, i.e., we expect HNC-like results. It is interesting to 
note that in both limits the MSA has a remarkable property that the 
compressibility and virial equations of state may be inferred one from the 
other. 

4.1. MSA for Purely Hard-Core Interactions: PY Limit 

From Eqs. (22), (36), (51), and (52) we obtain for purely hard-core 
interactions 

•z(PY) ~ c  coD 
. . . . .  x i x jR i jg i ] (  ij) (57) c~p 2D , ~.  o 2 R 

tJ 

Z(v e y ) -  l = p  coo Y' x i x j R ~ g u ( R i j  ) (58) 
2D U 

For a one-component system of hard spheres with packing fraction r/= 
p(coD/D)(R/2)  ~ Eqs. (57) and (58) lead to a general relation between the 
PY-"virial" and PY-"compressibility" equations of state 

( Z  (PY) - 1)2 (59 )  
dZ~eY)(rt) _ 2D- 'g2(R,q)= 2O_1r/2 

dr/ 

Note that the structure of both Eqs. (57) and (58) is consistent with the 
van der Waals one-fluid picture of replacing the giSs by a single "effective" 
gerf(/~) with/~D = ~i j  x i x i R ~ "  Moreover, the assumption of thermodynamic 
consistency between Eqs. (57) and (58) is equivalent to the original van der 
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Waals equation of state: the relation ~3Zv/O p = ~ Z ~ / ~ p  yields [upon using 
Eqs. (57) and (58) for g~ff] 

& 
ge2rf(/~) = geff(R) + p ~pp gerf(R) (60) 

which with the proper boundary condition is equivalent to 

geff(/~) = (1 -- 0) ' (61) 

r 7 = p ~ - -  (62) 

i.e., the exact result for additive hard spheres in one dimension. 
For the one-component hard-sphere system, the solution of the 

consistency equation f o r  a n y  D ,  with the boundary condition that Z v = Z ~  

diverges at r /= 1, is the o n e - d i m e n s i o n a l  van der Waals result g (R)=  
(1 - q ) - l .  This finding provides an indication that the PY theory for hard 
spheres becomes less accurate as the dimensionality increases. In one, three, 
a n d  five (29) dimensions the PY asymptotic (t/-~ 1 limit) behavior is found 
analytically to be Z c ~ (1 - tl) D, g ( R  ) ~ Z v ~ (1 -- t/) -w+l)/2, a result that 
seems to agree also with the numerical 2D results. (3~ 

First-order deviations from additivity in both PY and HNC theories 
follow the van der Waals picture. Consider a binary mixture of hard spheres 
with diameters RI~ = R22 = R, R12 = R21 = R(1 + a). Let Z ~~ correspond to 
the additive case ( a = 0 )  which for the particular system considered 
corresponds to the single component system with diameter R, and let Z (~) 
correspond to a 4: 0. From Eq. (49), to first order in a, we have 

~  = z ? '  + XlX2p o R a (63) 

which in view of Eq. (59) takes the form 

( a )  _ (0 )  Z ~  - -  Z c  (rl) + x l x 2 2 D r l  - -  
d ~  

Z~~ + 2x,x2[(1 + a) ~ - 1]}) 
c e , ~ l  

(64) 

Using Eq. (46) exactly the same result for Z~v ~) is obtained for HNC. 
Equation (59) provides relations between various hard-sphere cluster 

integrals, by considering the diagrammatic expressions for the virial coef- 
ficients in the expansion of Z c and Z v in powers of p. The simplest of these 
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relations, obtained from the fourth and fifth virial coefficients for the PY 
theory, are 

~ + 2 ~ = 1  ( ~ ) ( 3  ~ + 6  ~ + ~ 7 ] ) ( 6 6 )  

These "cluster" relations are valid for D-dimensional hard spheres, with the 
solid line representing a n f ( r ) =  e -~*(') - 1 bond, while a dotted line stands 
for an rf ' (r)  bond. 

4.2. MSA for Soft Potentials (SMSA): HNC-like Limit 

From the physical point of view, an MSA result with #i>(r) = Oij(r) will 
be considered as representing an approximation for the soft potentials #ij(r) 
in the limit when the contribution of the hard cores to the thermodynamics 
of the system vanishes, i.e., in the limit when the pair functions vanish at the 
cores: 

gij(Rij) = 0 (67) 

From Eq. (49) we see that this condition of continuity of the pair functions 
also automatically satisfies a stationarity condition for the functional 

aa 
= 0 (68) 

c0R is 

which in view of Eqs. (50)-(52) is now found to play the role of the excess 
free energy satisfying Hiroike's test 

c9~ ?~ (69) p-~p  = Z v - 1 ,  f l - ~ - = u  

For general potentials O~j(r) we cannot assume a priori any relation between 
the core radii and should in principle treat an MSA model with all Rij = Rii 
independent: 

~R tm 

P(A)DX21~I~I lg~l(Rll), l = m  

P R o-  TCODXlXrn tm lg~m(Rtm)' lg=m 

> o (70) 
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In either case 

8u R 8 
8R~m =Ag,,,,( , , , ) ~  glm(Rtm) (71) 

(MSA)(R ) -(PY)rR ) with A >~ 0. At f l =  0 we have gtm k lrnJ = glrn k lmJ > 0 and as we 
-(MSA)(R ] increase fl we expect to eventually cross g,~m ~ t,,, ----- 0, SO that if a solution 

of the type (67) is at all possible (and denoted R~j) then in that vicinity 
(MSA) R (MSA) ~glm ( lm)/Sfl < O. Assuming that 6~glr n (Rlm)/Rtm >/0 then for 

R zm > R ~m we have 8u/SR lm< 0 and for Rtm < R ~m we have 8u/SR Im> O, SO 
that the points R~s. represent (at least) a local maximum for the potential 
energy. (26) 

In addition, the "soft"-MSA (SMSA) satisfying Eq. (67) has the 
remarkable property ]similar to Eq. (59) for the hard spheres] that the 
"compressibility" and "virial" ("energy") equations of state are related and 
may be inferred one from the other without the need to know details of the 
solution. For the MSA we find from Eqs. (19), (27), and (32) that 

8 
u = -47_ (pA) (72) op 

and by using Eqs. (15) and (69) we find 

- -  - - ~ - 1  c~2Pc=28~ + - ~ p  P 692~ _ f l  c92~ 
2 f l O p  ~ ~pZ aft# (73) 

For the repulsive inverse power potentials 0u(r)= yur -~, Yij > 0, in the 
strong coupling limit (high density and/or low temperatures) we have ~ --~ 
and Eq. (73) reduces to 

~p ~-  ~p (pZc) -- Z v = 0 (74) 

Let Z v ~ avP "/z) and Z~ ~ acp "/z) in the strong coupling limit; then from 
Eq. (74) we get 

ac o~oo z ~  2 + 1 (75) 

while av/a c = 1 represents the "virial-compressibility" consistency. For the 
one-component plasma (OCP), 0(r)---r -~, it is thus expected that 
av/% = 3/4, 2/3 in two and three dimensions, respectively, which indeed 
agrees with the HNC results for the model.(31'a2) The trend 
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limh_~3(av/ac) = 1 has been observed ~33) in the numerical HNC results for 
the inverse power potentials in three dimensions. 

The excess free energy difference between two states fl, p and flo,Po 
within the SMSA is [in view of Eqs. (68) and (69)] 

_ R c (Af)SMSA = ~(fl, p, {R~j(fl, p)}) ~:(fl0,P0, { ij(fl0,P0)}) (6) 

and in those special cases when Eq. (67) may be solved with R~(fl = 0, p) = 
R~i(fl, p = 0 ) = 0  [with is possible only for potentials Oij(r)possessing 
Fourier transform] then ~ represents the excess free energy via the "virial" 
or "energy" equations of state. Of particular importance in this class of 
potentials is, of course, the D-dimensional Coulomb potential, ~(k)~ k -2. 
The fact that ~ represents a good model excess free energy for such systems, 
being at the same time a functional of the relatively structure less functions 
etj(r ) which may be, in turn, approximated well by interactions between 
smeared charge distributions, ~13) is instrumental in the analysis of the 
thermodynamics of charged objects.~34'35) 

5. VARIATIONAL MSA FO THE ONE-COMPONENT PLASMA 

RC The finding that u(fl, p, { ij(fl, P)}) maximizes the expression for the 
poential energy u(fl, p, {R0.}) is of special significance in view of the expected 
similarity (see also Ref. 9) between the SMSA obeying Eq. (67) and the 
HNC results for the soft potentials. From the discussion of the nature of the 
bridge functions ~8) it is expected that, in the general case, the HNC-"virial" 
equation of state overestimates the true pressures or energies for repulsive 
potentials (or for any potentials in the limit of very high densities). When 
modeling the structure and thermodynamics of the system with soft 
potentials (~ij(r) one may wish to use the MSA results u(fl, p, {Ro-}) with a 
judicious choice for Rij(]3,p) with possibly gu(Rij)> 0 (t.e., discontinuous 
pair functions) and thus improve upon the results obtained from Eq. (67). 
All such models, including Eq. (67), may be formulated variationally, as will 
be now demonstrated for the particular case of the one-component plasma 
(OCP), a system which has been the object of extensive study in recent 
years. (21) 

The excess thermodynamic properties of the OCP (namely, point ions 
of charges Ze immersed in a uniform compensating background of electrons) 
depend on the single reduced variable F = fl(Ze)2/a where a is the ion-sphere 
radius [a = (3/4~p) 1/3 in 3D]. The MSA for the related system that includes 
the hard-core insertion, namely, the charged hard spheres (CHS) has been 
solved analytically. ~) The CHS equation of state depends on /" and the 
packing fraction ~/= (~/6)pR 3, i.e., ~ = ~(F, q), u = u(F, ~1), g(R) = 
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g(R, F, r). Note that ~(0, r/) and g(R, O, r/) = gvy(R, r/) represent the results 
for the PY equation for hard spheres. 

Consider the free-energy functional 

f = fo(r/) + ~(F, r/) -- 5(0, r/) (77) 

where fo(r/) represents a fitting function such that the potential energy for the 
OCP is determined from 

Uocv(r)  = UcHs(r, r/(r))  (78) 

I f f  is no represent the excess free energy for the OCP then 

df  Of Of Or (79) 
U~ = F ~ -  = F-~f- + F @r/ OF 

But since UcHs(F, r/) = FO~(F, r/)/OF we obtain the variational condition 

o f ( r ,  r/) _ o ( 8 0 )  
@r 

as determining the function r/(F) in Eq. (78). It is through Eq. (80) that the 
choice of f0( r  ) affects the result r(F). Note that the exact inequality (53), 
which for a one-component system will read Of/Or~ >~ 0, plays no role in 
obtaining Eq. (80). However, if Eq. (80) does not have a unique solution (14) 
then (53) may play a role in selecting the appropriate one. 

In view of Eq. (49), we write Eq. (80) in the form 

g~Hs(R, F, r/) = G2(r / )  (81) 

where 

GZ(r/) r / ) -  2go(r) = g~y(R, (82) 

and we also define 

1 O f o ( r )  
go(r) 4 & (83) 

Equation (83) represents the obvious relation for a hard-sphere virial excess 
free energy f0(r ) obtained from Eq. (36) when the contact value of the pair 
function go(R, r/) is given by g0(r/). In particular, if we make the choice 

6r/ 
- - -  + 2 l n ( 1  - q )  f o ( , 1 )  = f ~ Y , ~ ( r / )  - 1 - r/ 
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i.e., the PY virial equation of state for the hard spheres, then 

1 r / + 2  
go(r/) = g~(R,  r / ) -  2 (1 -- r/)2 

This choice, termedt14) DMSA 1, is immediately seen from Eqs. (81)-(83) to 
be limited to the range gpy(R, r/)>/2 or r/>/0.25 THE SMSA model 
[Eq. (67)] is obtained by the choice f0(r/) = 5(0, r/) as is easily seen directly 
from Eq. (77). 

With the restriction that g(R, / ' ,  tl) >t- O, the OCP results as modeled by 
Eq. (77) may be cast in the following form, which is especially convenient 
for analyzing the strong coupling (F >> 1) behavior for each choice offo(r/): 

13r/(r /+2) [ G(r/) ] I  1/2 
Q =  (r/+ 1/2) 2 1 gpv(R ,r/) >/0 (84) 

1 t ( r / + 1 / 2 )  z 2 
/ ' = ~ -  [(1 + Q ) 2 _  1] I (85) 

t(1 _ r/)3 r/,/3 

1 (r/+ 1/2)(3/') 1/2 (1 + r / -  ~r/2)r/-1/3 
u -  6 r/2/3 Q -  2 F (86) 

The function r/(F) is obtained by eliminating Q from Eqs. (84) and (85). The 
function Q(F, r/) as obtained from Eq. (85) is zero for r /= 0 and r /= 1 and 
has a single maximum in between, with height that increases with F, being 
zero for F =  0. In order to obtain variational (fitting) results for all F, the 
function Q(r/) as defined in Eq. (84) should start on the r/= 1 axis and 
terminate on the Q = 0 axis (see Fig. 2 in Ref. 14). 

Let e = 1 --r/ and observe that the leading order in the expansion in 
powers of e around e = 0 is Q ~ eEg~/2, so that from Eq. (85) the leading 
order is F ~  e-Zgo, or 

r -  gpy(R, r/) g0(r/) (87) 

It is thus easy to see how the choice off0(r/) affects the asymptotic F>> 1 
expansion of Uocp(F ). For f0(r/) =fpv,v(r/), g0(r/) ~ gpy,v(R, r/) "~ e-5, and 
thus F ~  e -4 leading to Uocp(F ) = --0.9F + bl/" 1/4 + . For f0(r/) = 5(0, r/), 
g o ( r / ) ~ g 2 y ( R , r / ) ~ e  -4, so that / '~e-6  and thus UocP=--0.9F+ 
bzF1/2+ . . . .  Upon choosing f0(r/) =fPv,c(r/)or f0(r/)=fcs(r/),  i.e., the PY- 
compressibility or the Carnahan-Starling (CS) expressions for the hard- 
sphere free energy, ~14) we have go ~ e-3 or F ~  e -5 with the form Uoc P = 
-0 .9F  + b3/" 2/5 + ... .  It is interesting to note that the choice of r/(F) such 
that thermodynamic consistency is achieved between the "energy" and 
"compressibility" equations of state for the OCP via the MSA results for the 
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CHS, is governed <16) by an asymptotic behavior of the type 
go(q) ~n-~ gpy(R, ~1). This result is probably valid for any D since the MSA 
result for the CHS should contain the term fl(~p/~p)~VY,Hs) in its expression 
for fl(OP/ap)c, as 

(ee) 
fl \~P-P ]c = lim fl F--*O ~ c 

g y(R, By Eq. (59) such a term should behave like r/), and in turn should be 
of order F if thermodynamic consistency is required also for F ~  oo. 

Finally observe that the choice G(r/) = gvy(R, r / ) -  1 corresponding to 
fo(tl) =fvy,v(~l) - 2r/ in Eq. (77), leads by Eq. (84) to 

Q = (6r/)1/2 1 - 17 (88) 
t /+  1/2 

This function, like that obtained from f0(r/) =fvy,v(t/),  starts from zero at 
r /=  1, then rises (for smaller values of 17) but instead of curving up and 
terminating at r /=  0.25, it curves down and reaches zero for r /=  0, like in 
the choice f0(r/) = 5(0, r/). The resulting function r/(F) behaves 
asymptotically (in the limit F ~  oo) like that for DMSAI, leading to 
u ( F ) = - O . 9 F + 2 ( F / 1 8 ) l / 4 - - 1 / 2 +  ..., but in the region 10~<F~<200 it 
follows rather closely the results of the "virial-compressibility" consistent 
model, (16) and finally for F~< 10 it tends towards the SMSA results obeying 
Eq. (67). The simple analytic result obtained by Eqs. (88), (5), and (86) 
contains all the favorable features of the various MSA-based models for the 
O C P  (14-16) and covers the full range F/> 0. 

ACKNOWLEDGMENTS 

I thank Bill Gelbart and Joel Lebowitz for their encouragement, useful 
suggestions, and comments. I am indebted to David MacGowan for carefully 
reading the manuscript and for interesting discussions. Helpful remarks by 
Lesser Blum are gratefully acknowledged. This work was supported in part 
by NSF grant No. CHE80-24270. 

REFERENCES 

1. (a) J. K. Percus and G. Yevick, Phys. Rev. 136:B290 (1964); J. L. Lebowitz and J. K. 
Percus, Phys. Rev. 144:251 (1966). (b) The pioneering methods for solving the MSA 
were established by M. S. Wertheim, J. Math. Phys. 5:643 (1964); and R. J. Baxter, Aust. 
J. Phys. 21:563 (1968). (c) References to earlier literature in the field are given by, e.g., 



236 Rosenfeld 

L. Blum and J. S. Hoye, J. Stat. Phys. 19:317 (1978); direction to more recent works 
may be found in, e.g., J. S. Hoye and G. Stell, Mol. Phys. 11:1 (1984). 

2. J. S. Hoye and G. Stell, J. Chem. Phys. 67:439 (1977). 
3. Y. Rosenfeld, J. Chem. Phys. 76:1170 (1982). 
4. M. J. Gillan, J. Phys. C: Solid State Phys. 7:LI (1974); a closely related approach 

employing a "marriage" between a short range PY behavior and long range MSA 
behavior for the direct correlation functions is described by A. H. Narten, L. Blum, and 
R. H. Fowler, J. Chem. Phys. 60:3378 (1974), and see references therein. 

5. R. G. Palmer and J. D. Weeks, o r. Chem. Phys. 58:4171 (1973). 
6. G. Pastore, C. Napi, U. DeAngelis, and A. Forlani, Phys. Lett. 78A:75 (1980). 
7. J. P. Hansen and J. B. Hayter, Mol. Phys. 46:651 (1982). 
8. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20:1208 (1979). 
9. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20:2162 (1979). 

10. R. G. Palmer, J. Chem. Phys. 73:2009 (1980). 
11. U. DeAngelis, A. Forlani, and M. Giordano, J. Phys. C.: Solid State Phys. 13:3649 

(1980). 
12. Y. Rosenfeld, J. Phys. C.: Solid State Phys. 15:L125 (1982). 
13. Y. Rosenfeld, Phys. Rev. A 25:1206 (1982). 
14. D. MacGowan, J. Phys. C.: Solid State Phys. 16:59 (1983). 
15. D. MacGowan, J. Phys. C.: Solid State Phys. 16:L7 (1983). 
16. D. MacGowan, =1.. Stat. Phys. 32:123 (1983). 
17. S. M. Foiles and N. W. Ashcroft, J. Chem. Phys. 75:3594 (1981). 
18. Y. Rosenfeld, Phys. Rev. A 29:2877 (1984). 
19. E. Waisman, Mol. Phys. 25:45 (1973). 
20. See, e.g., the review article by J. A. Barker and D, Henderson, Rev. Mod. Phys. 48:587 

(1976). 
21. M. Baus and J. P. Hansen, Phys. Rep. 59:1 (1980). 
22. H. C. Andersen and D. Chandler, J. Chem. Phys. 57:1918 (1972). 
23. R. J. Baxter, J. Chem. Phys. 47:4855 (1967). 
24. R. J. Baxter, J. Chem. Phys. 52:4559 (1970). 
25. R. E. Caligaris, A. E. Rodriguez, and M. Silbert, J. Chem. Phys. 51:1016 (1969). 
26. This result corrects an error in Ref. 12. 
27. J. L. Lebowitz, Phys. Rev. 133:A895 (1964). 
28. J. L. Lebowitz and D. Zomick, J. Chem. Phys. 54:3335 (1971). 
29; B. C. Freasier and D. J. Isbister, Mol. Phys. 42:927 (1981). 
30. D. G. Chae, F. H. Ree, and T. Ree, J. Chem. Phys. 50:1581 (1969). 
31. K. C. Ng, J. Chem. Phys. 61:2680 (1974). 
32. F. Lado, Phys. Rev. B 17:2827 (1978). 
33. F. Rogers, private communication. 
34. Y. Rosenfeld, Phys. Rev. 26:3622 (1982). 
35. Y. Rosenfeld and W. M. Gelbart, On the Statistical Thermodynamics of Charged 

Particles of Arbitrary Shape and Concentration, J. Chem. Phys., in press. 


